Evaluating Opportunistic Multi-Channel MAC: Is Diversity Gain Worth the Pain? By:
نویسندگان
چکیده
We evaluate the performance of an opportunistic multi-channel medium access control protocol and compare it to that of the corresponding single-channel MAC (S-MAC) and a nonopportunistic multi-channel MAC (M-MAC). We do this in three different settings: (1) an ideal scenario where no control channel is used and no sensing delay is incurred, (2) a more realistic scheme where users compete for access on a control channel using random access, and (3) a scheme similar to (2) but with a time-division multiplexing (TDM) based access scheme on the control channel. Our analysis and numerical results show that in terms of delay performance, the random access and competition on the control channel, which typically occupy a fraction of the total bandwidth, almost always wipe out the channel diversity gain, a main motivation behind an opportunistic multichannel MAC. On the other hand opportunistic access increases bandwidth utilization which reduces the system’s total busy time. As a result it helps reduce power consumption in general. When TDM is employed on the control channel, the data sub-channel sensing delay becomes the main bottleneck to attaining better performance. In this case the performance of opportunistic multichannel MAC gets closer to that of the single-channel MAC when the channel sensing overhead is substantially reduced.
منابع مشابه
Is Diversity Gain Worth the Pain: Performance Comparison Between Opportunistic Multi-Channel MAC and Single-Channel MAC
In this paper we analyze the delay performance of an opportunistic multi-channel medium access control scheme and compare it to that of the corresponding single channel MAC scheme. In the opportunistic multi-channel MAC scheme, we assume that the pair of sender/receiver is able to evaluate the channel quality after a certain amount of channel sensing delay and to choose the best one for data co...
متن کاملMulti-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملMulti-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملA Multi-Channel Diversity Based MAC Protocol for Power-Constrained Cognitive Ad Hoc Networks
One of the major challenges in the medium access control (MAC) protocol design over cognitive Ad Hoc networks (CAHNs) is how to efficiently utilize multiple opportunistic channels, which vary dynamically and are subject to limited power resources. To overcome this challenge, in this paper we first propose a novel diversity technology called Multi-Channel Diversity (MCD), allowing each secondary...
متن کاملOutage Probability Bound and Diversity Gain for Ultra-Wideband Multiple-Access Relay Channels with Correlated Noises
In this paper, Ultra-wideband (UWB) multiple access relay channel with correlated noises at the relay and receiver is investigated. We obtain outer and inner bounds for the IEEE 802.15.3a UWB multiple access relay channel, and also, a diversity gain bound. Finally, we evaluate some results numerically and show that noise correlation coefficients play important role in determining relay position.
متن کامل